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Abstract

Classifying heterogeneous visually rich documents
is a challenging task. Difficulty of this task in-
creases even more if the maximum allowed infer-
ence turnaround time is constrained by a thresh-
old. The increased overhead in inference cost, com-
pared to the limited gain in classification capabil-
ities make current multi-scale approaches infeasi-
ble in such scenarios. There are two major con-
tributions of this work. First, we propose a spa-
tial pyramid model to extract highly discrimina-
tive multi-scale feature descriptors from a visually
rich document by leveraging the inherent hierarchy
of its layout. Second, we propose a determinis-
tic routing scheme for accelerating end-to-end in-
ference by utilizing the spatial pyramid model. A
depth-wise separable multi-column convolutional
network is developed to enable our method. We
evaluated the proposed approach on four publicly
available, benchmark datasets of visually rich doc-
uments. Results suggest that our proposed ap-
proach demonstrates robust performance compared
to the state-of-the-art methods in both classification
accuracy and total inference turnaround.

1 Introduction

Identifying similar documents from a collection of heteroge-
neous visually rich documents has garnered the intrigue of
researchers for a long time. Along with traditional linguis-
tic cues, these documents also use a number of visual modi-
fiers [Sarkhel and Nandi, 2019] to augment/highlight the se-
mantics of different visual areas appearing in them. Whether
searching in a digitized library of historical manuscripts, ex-
tracting structured records from official ledgers to create a
knowledge-base or interacting with a restaurant-menu in an
augmented-reality setting, identifying a document as one of
N predefined categories is an important precursor to a num-
ber of tasks, including indexing, recommendation, transcrip-
tion, and information extraction.
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Figure 1: Sample images of visually rich documents from our
datasets, demonstrating some of the major difficulties in classifying
such documents accurately. Documents A1, A2 from the NIST spe-
cial dataset-6 and B1, B2 from the MARG dataset belong to differ-
ent document classes although their layout similarity is high. On the
other hand, documents C1, C2 from the Tobacco Litigation dataset
and D1, D2 from the RVL-CDIP dataset exhibit low layout similar-
ity despite belonging to the same class

Challenges. To classify visually rich documents, we need
to encode local invariant patterns appearing in documents be-
longing to each class. If the documents are heterogeneous
i.e., the content, layout or format of the test document is not
known beforehand, this becomes a challenging task, as docu-
ments may exhibit high intra-class and/or low inter-class vari-
ance (refer to Fig. 1) in layout similarity. If the content of
the document is not known, relying on its semantic proper-
ties for this purpose may not be feasible. Generating high-
quality transcription of real-world documents is also not a
trivial task [He and Schomaker, 2017; Sarkhel et al., 2016;
2017]. We explore a layout-based approach for classify-
ing heterogeneous visually rich documents in this work. It
has been established in recent past [Gordo et al., 2013;
Lazebnik et al., 2006; Lowe, 2004; Mao et al., 2018] that
scale-invariant local patterns encoded by multi-scale feature
descriptors outperform its single-scale counterparts[Gordo et
al., 2013; Bagdanov and Worring, 2001; Afzal et al., 2015]
in this scenario. Identifying local invariant patterns persisting
at multiple resolutions of a document offers the flexibility to
search for pairwise, structurally consistent matches1 between
components across various positions of a document. Few

1the one-to-one mapping between structural components of two
documents such that the parallel connectivity [Forbus et al., 1995]
is preserved [Kumar et al., 2014]



Figure 2: End-to-end workflow of our classification scheme. Upon input, the squared rendered image of a test document ( D ) is fed to the
coordinator network. It computes the prediction probabilities of this document image over all class-labels defined for the corpus. The top-1
predicted label (c2) is used to query a Multiplex-table that returns the optimal layout abstraction level (l4) to encode D . The document is then
converted to a binary image (I l 4 ,D ) annotating structural components atl4 (text-line) layout abstraction. A multi-column classifier trained on
text-line abstractions of the training corpus finally extracts feature descriptors fromI (l 4 ,D) and infers the final class-label forD

works have explored this approach to classify visually rich
documents by extracting multi-scale feature descriptors in re-
cent past. The first work to utilize this approach successfully
was Cesarini et al. [Cesarini et al., 2001]. They proposed
a recursive X-Y tree based encoding technique to generate
fixed-length signatures, representing each document. Later,
Kumar et al. [Kumar et al., 2014] proposed a static zoning
scheme, recursively partitioning each document using verti-
cal and horizontal grids and aggregating features extracted
from each zone to encode a document. Although not for clas-
sification, Xu et al. [Xu et al., 2018] took a similar approach
for layout analysis of historical documents in a multi-task set-
ting using an ensemble of fully-connected convolutional neu-
ral networks. More recently, Das et al.[Das et al., 2018] have
shown that an ensemble of region-based classifiers can also
be employed for this task. However, there are a number of
limitations in using the existing multi-scale feature descrip-
tors for modern workflows.

One of the major limitations of employing contemporary
multi-scale classifiers for real-world applications is that the
gain in representational capabilities using multi-scale features
is marginal compared to the overhead in end-to-end inference
turnaround, making it impractical to deploy them in scenar-
ios where the average inference time is constrained (e.g. aug-
mented reality applications, gesture-based interactive work-
flows) by a threshold (≈ 500ms) [Jiang et al., 2018]. Hence,
for multi-scale classifiers to be considered feasible solutions
in such applications, they need to satisfy two conditions:

C1.1: Representational capability of the feature descriptors
should be high

C1.2: End-to-end inference turnaround should be low

Our hypotheses. We hypothesize that the main reason
behind the limited representational capability of current
aggregation-based approaches to compute multi-scale feature
descriptors is large semantic gaps between feature descrip-
tors computed at different resolutions. As most of the feature
descriptors computed at a lower resolution are not reused at
higher abstractions, we miss out on the opportunity to per-
sist scale-invariant local patterns in the layout, commonly ob-
served in a visually rich document. To address this (condi-

tion C1.1), we propose a warm-start approach for computing
the multi-scale features in this work. We developed a spatial
pyramid model leveraging the inherent layout hierarchy of a
document for this purpose. We discuss the spatial pyramid
model in more details in Section 2. Our key insight here is
that if the layout hierarchy between structural components at
various levels of layout abstraction can be preserved, we can
potentially recycle features extracted from the lower resolu-
tions at higher levels of abstraction, leading to scale-invariant,
highly discriminative feature descriptors to encode the docu-
ment. We also hypothesize that compared to current aggrega-
tion based approaches, end-to-end inference turnaround (con-
dition C1.2) can be minimized if feature descriptors are ex-
tracted from the most discriminative level, leveraging a level-
wise competition within the spatial pyramid model. We dis-
cuss this in more details in Section 3.

Technical contributions. Our first contribution is a spa-
tial pyramid model to represent a visually rich document by
leveraging its inherent layout hierarchy. A supervised coor-
dinator network, called LadderNet, is responsible for rout-
ing the workflow towards the most discriminative level (say
l) to encode the document by introducing a level-wise com-
petition within the pyramid. Each level of the spatial pyra-
mid corresponds to a layout abstraction, defined by our lay-
out model (Section 2.1). Once the feature descriptors cor-
responding to the selected level have been computed, classi-
fication is performed using a depth-wise separable [Howard
et al., 2017] multi-column convolutional network. Com-
pared to the current aggregation-based approaches, our rout-
ing based approach offers two distinct advantages. First, it
helps reduce redundant contributions from feature descrip-
tors extracted at multiple scales by maintaining the informa-
tion about layout hierarchy at each level of the spatial pyra-
mid. Second, compared to the current aggregation-based ap-
proaches, it also helps reduce the turnaround time for end-to-
end inference (condition C1.2). An overview of the coordina-
tor network and the proposed deterministic routing strategy
used to compute multi-scale feature descriptors is presented
in Section 3. The multi-column classifier used for final pre-
diction will be discussed in Section 4. To summarize, the
major contributions of our work are as follows:



Figure 3: The spatial pyramid model for a sample document from
one of our datasets. Each level of the spatial pyramid corresponds
to the anonymized equivalent image at its corresponding level of
layout abstraction. The anonymized equivalent images at paragraph
and column-abstraction of this document are identical because it has
a single-column layout. The page-abstraction represents a single
bounding-box covering the visual area of the entire document

• A spatial pyramid model to define layout hierarchy at
multiple resolutions of a visually rich document

• A level-competitive routing strategy to compute feature
descriptors leveraging the spatial pyramid model

Summary of results. We evaluated the proposed classifica-
tion scheme on four publicly available datasets of single-page
visually rich documents. Results suggest that we are able to
outperform current state-of-the-art approaches utilizing either
handcrafted or deep convolutional network based multi-scale
features in terms of both classification accuracy and total in-
ference turnaround time, on all datasets.

2 The Spatial Pyramid Model
We construct a spatial pyramid model to facilitate the com-
putation of feature descriptors for each input document.

Definition 2.1. The spatial pyramid model of a visually rich
document is a hierarchical construct of structural components
at various layout abstractions of the document. Each level of
the pyramid corresponds to an anonymized equivalent image
at that level of abstraction. The layout model used to define
these abstractions is discussed in the following section.

2.1 The Document Layout Model
We represent a visually rich document D as a nested tuple
(A D , TD ), where AD =

S
i ai denotes the set of atomic

elements (ai ) appearing in the document and TD represents
the visual organization of D . Each ‘word’ in D denotes an
atomic element in our layout model. We represent the visual
organization of a document using a tree-like structure. The
leaf-nodes of TD represent atomic elements ofD , whereas its
root-node represents the entire document. The non-leaf nodes
represent structural components of D at various levels of lay-
out hierarchy. Each node (n i ) in the layout-tree is represented
as a nested tuple, ni = (x i , yi , hi , wi , ti ); x i , yi , hi and wi

denote the coordinates of the top-left corner, the height and
the width of the smallest bounding-box enclosing the visual
area and t i represents the textual content of the node. An edge
between a parent and its child node inTD signifies that the vi-
sual area represented by the child node is enclosed by the vi-

Input Operator n c m s

2242 × 3 conv2d - 32 1 2
1122 × 32 inv-bottleneck 1 16 1 1
1122 × 16 inv-bottleneck 6 24 2 2
562 × 24 inv-bottleneck 6 32 3 2
282 × 32 inv-bottleneck 6 64 4 2
142 × 64 inv-bottleneck 6 96 3 1
142 × 96 inv-bottleneck 6 160 3 2
72 × 160 inv-bottleneck 6 320 1 1
72 × 320 1 × 1 conv2d - 1280 1 1
72 × 1280 7 × 7 avgpool - - 1 -
12 × 1280 1 × 1 conv2d - c0 -

Table 1: An overview of the LadderNet architecture; Each row de-
notes a sequence of one or more identical layers, repeated ‘m’ times.
Layers in the same sequence have the output channel size ‘ c’. The
first layer of each sequence has stride ‘s’ and all others use a stride
of 1. ‘n’ is the expansion factor applied to the input dimensions
of each inverted bottleneck layer. c0 denotes the number of output
channels. The architecture of an inverted bottleneck layer is shown
in Table 2. 3 × 3 kernels are used for all spatial convolutions

Input Operator Output

h × w × c 1 × 1 conv2d + ReLU h × w × nc
h × w × nc 3 × 3 dws + ReLU h

s
× w

s
× nc

h
s

× w
s

× nc 1 × 1 pointwise conv2d h
s

× w
s

× c0

Table 2: Architecture of the depth-separable convolutional block
with inverted residual connections, input channel size = c, output
channel size = c0, stride size = s × s , and expansion factor = n, as
mentioned in Table 1; We have used a constant value of n = 6 for
all layers except the input layer in our implementation

sual area represented by the parent node. Therefore, the non-
leaf nodes inTD are nested. We define five levels of layout hi-
erarchy using a standard specification format (hOCR[Breuel,
2007]). In this format, every page of a document is split into
columns, every column is split into paragraphs, every para-
graph is divided into text-lines and every text-line is divided
into words. The layout-tree TD is defined leveraging this hi-
erarchical relationship. We construct TD recursively, using
a popular open-source page segmentation algorithm [Smith,
2007]. The layout model of a document is constructed offline,
before introducing it to our workflow.

2.2 Constructing the Spatial Pyramid Model

Based on our definitions above, the spatial pyramid model of
a visually rich document represents a hierarchical structure
with five levels (at most), where each level corresponds to an
anonymized equivalent image at a specific level of layout ab-
straction. The bottom-most level of this structure corresponds
to word-abstraction and the top-most level represents the
page-abstraction of a document. An illustration of each level
of the spatial pyramid for a sample document from one of our
datasets is shown in Fig. 3. Once the spatial pyramid is con-
structed, a coordinator network, called LadderNet, selects the
most discriminative level in the spatial pyramid to compute
feature descriptors for encoding the input document. We will
discuss the routing scheme in details in the following section.



3 Deterministic Routing to a Pyramid Level
One of the major contributions of this work for minimizing
the end-to-end inference turnaround is a deterministic rout-
ing strategy to select a level in the spatial pyramid model that
offers the maximum discriminative capability. The feature
descriptors used to encode a test document for final predic-
tion is extracted from the anonymized equivalent image cor-
responding to the selected level by a multi-column classifier.
The key enabler in this is a Multiplex-table (refer to Fig. 2).

Definition 3.1. For a corpus with N classes, the Multiplex-
table M =

S
i,j (ci , lj ), i, j∀ , is a hash-table of dimension

N × 2 , indexed on class-labels. The first column (key) of
each row represents a class-label ci , 1 ≤ i ≤ N, whereas the
second column (value) denotes the optimal pyramid level l j ,
1 ≤ i ≤ 5 corresponding to that class-label.

3.1 Populating the Multiplex-table
Populating the Multiplex-table is the responsibility of a co-
ordinator network. This is a softmax classifier, trained on
anonymized equivalent images of the training corpus. The ta-
ble is populated by introducing level-wise competition within
the spatial pyramid. The coordinator network is trained on
anonymized equivalent images corresponding to each level
of the pyramid, separately, for this purpose. The five-fold
cross-validation accuracy for each class-label ci , 1 ≤ i ≤ N
is computed for each level of abstraction. The pyramid level
corresponding to the abstraction that performs the best for a
class-label ci , i∀ is selected as the destination level for ci in
the table. Population of the Multiplex-table for a training cor-
pus is done offline, as a preprocessing step. It is worth men-
tioning here that we performed exploratory experiments with
a number of different variants of the Multiplex-table. The
best performing version was empirically selected based on (a)
the best cross-validation accuracy and (b) average inference
turnaround time achieved on all datasets. We also performed
an ablation study in Section 5.3 to investigate the contribu-
tions of the routing scheme on end-to-end performance.

3.2 Querying the Multiplex-table
When a test document is presented to our system, a
squared (224 × 224), rendered image of the document is fed
to the coordinator network. This is a deep convolutional net-
work, trained on rendered images of documents in the origi-
nal training corpus. To select the optimal pyramid level, the
top-1 predicted label ( c) by the coordinator network is used
to look up the Multiplex-table. The corresponding pyramid
level, l = M (c) is the optimal pyramid level for the document.
The anonymized equivalent image corresponding to that level
in the spatial pyramid model (refer to Fig. 3) is fed to a multi-
column classifier to encode and infer the final class-label of
the document. LadderNet, the coordinator network developed
for this purpose is discussed in the following section.

3.3 The Coordinator Network
We developed LadderNet, a supervised coordinator network
for selecting the most discriminative layout abstraction to
represent a document for the final classification task. An
overview of its architecture is presented in Table 1.

Figure 4: A block-diagram of our proposed multi-column classi-
fier. Each column is a depth-separable convolutional network with
inverted residual connections that takes a unique morphologically
transformed version of the anonymized equivalent of a test docu-
ment as input; The image filters used for this are shown in-place

Architecture. The input to LadderNet is a squared, ren-
dered image ( 224 × 224 × 3 ) of a visually rich docu-
ment. It outputs a distribution of prediction probabilities
over N class-labels defined for the corpus. As minimiz-
ing end-to-end inference turnaround is one of the main ob-
jectives (refer to C1.2, Section 1) of this work, we utilize
depth-separable convolutional blocks [Howard et al., 2017;
Sandler et al., 2018] with inverted residual connections (i.e.,
skip-connections joining two bottleneck layers) to construct
a fast and memory-efficient network for this purpose. Each
convolutional block is followed by batch-normalization [Le-
Cun et al., 2015] and a Rectified Linear Unit [LeCun et al.,
2015]. The architecture of each convolutional block is shown
in Table 2. A logistic regression based classifier is used to
compute the prediction probabilities. For each input docu-
ment, the top-1 prediction is then used to query the Multiplex-
table. The anonymized equivalent image at the selected level
of layout abstraction is fed to the multi-column classifier for
inferring the final class-label for the input document.

Training. LadderNet is trained on rendered images of the
visually rich documents in the original training corpus. It is
initialized with pre-trained ImageNet weights (L1-transfer of
weights [Pan and Yang, 2010]). To address the issue of im-
balanced class distribution in the training corpus, we trained
LadderNet on a focal-loss [Lin et al., 2018] based learning
objective. If pi denotes the predicted probability of a test doc-
ument belonging to class-label ci and yi represents the cor-
responding indicator variable (1 if the document belongs to
class ci , 0 otherwise), the loss function is defined as follows:

F L(p, y) = −Σ N
i=1 yi × (1 − p i )γ × ln(p i ) (1)

Parameters. In Eq. 1, N is the number of distinct class-
labels defined for the corpus, the value of γ is set to 4 for all
of our experiments. We closely followed the parameter set-
tings of the MobileNetV2 architecture [Sandler et al., 2018]
in our implementation. RMSProp[LeCun et al., 2015] is used
for parameter training. The learning parameters momentum,
initial-learning-rate, and learning-rate-decay were set to 0.9,
0.045 and 0.98/epoch. This network has the computational
cost of approximately 300M multiply-adds.



4 Multi-column Classifier for Final Prediction

Once the optimal pyramid level has been selected (sayl), pre-
dicting the final class-label for a test document is the respon-
sibility of a multi-column classifier, trained on anonymized
equivalent images of the training corpus at layout abstraction
corresponding to the selected pyramid levell (refer to Fig. 2).
We developed a depth-separable, multi-column convolutional
architecture for this purpose. There are five columns in our
architecture. Each column is a depth-separable convolutional
network with inverted residual blocks, identical in architec-
ture to the coordinator network, introduced in Section 3.3.
The input to the multi-column classifier is the anonymized
equivalent image of the test document at layout abstraction
corresponding to the l th level. Each of its five columns ex-
tracts unique feature descriptors from its input and computes
a distribution of prediction probabilities over N class-labels
defined for the corpus. These individual predictions are then
combined using a meta-classifier to output the final class-
label inferred for that document.

4.1 Training the Multi-column Classifier

Each of the five columns in our multi-column architecture
is trained in parallel, on separate, morphologically inter-
sected [Patin, 2003] versions of the training corpus at l th

level of layout abstraction. The image filters (refer to Fig. 4)
used to generate these morphologically transformed images
for each column have dimensions 224 × 224. We empir-
ically selected the width of the ‘black-bands’ in the verti-
cal, plus & cross shaped filters as w1 = 0.4 × h+w

2 and
w2 = 0.6 × h+w

2 for the horizontal patch filter, where h, w
= 224. The training corpus for each column is constructed
by morphologically transforming the anonymized equivalent
images of documents in the original training corpus, at the
l th layout abstraction. Learning objective, weight initializa-
tion and parameter values to train each column are similar
to what has been described in Section 3.3. During infer-
ence, the anonymized equivalent image of a test document
and its morphological transformations are fed to appropriate
columns (Fig. 4) in the multi-column architecture. Prediction
probabilities computed by each column are then aggregated
by a meta-classifier to output the final class-label.

4.2 Column Aggregation

Let, P j
i denotes the N -dimensional vector of prediction prob-

abilities computed for the i th document by the j th column

Dataset Size No. of
classes

σinter σintra

NIST 5595 20 H L
MARG 1553 9 M M
Tobacco 3482 10 L H

RVL-CDIP 400,000 16 L H

Table 3: An overview of the datasets and their properties used in
this work; ‘σinter ’ and ‘ σintra ’ refer to inter-class and intra-class
variance in layout similarity between documents in the dataset; ‘H’,
‘M’, ‘L’ represent High, Medium and Low respectively

in our architecture. Here, N denotes the number of class-
labels defined for the corpus. The objective of the meta-
classifier is to learn a mapping f : < N×5 →< . The domain
of f , say Σ , is the aggregate space of prediction probabili-
ties (say βi , i = 1 to 5) by each column in our architecture
i.e. Σ =

S 5
i=1 βi . We have investigated a number of dif-

ferent methods in our experimental setup to learn f . This
includes simple and weighted averaging, logistic regression
and a three-layer (256-256-N ) multi-layer-perceptron.

5 Experiments
We seek to answer three key questions in this study, (a)
how does our method compare against current state-of-the-
art methods in terms of classification accuracy? (b) how does
it compare in terms of average turnaround time for end-to-
end inference? (c) what are the contributions of individual
components in our proposed workflow on downstream clas-
sification accuracy? To answer the first two questions, we
compare our method (Section 5.2) against four state-of-the-
art multi-scale classifiers in Section 5.2. To answer the third
question, we performed an ablation study in Section 5.3.

5.1 Experiment Design
We evaluated our proposed method on four publicly avail-
able benchmark datasets of single-page visually rich docu-
ments. These are: the NIST special dataset-6 (D1) [NIST,
2018] (filled tax-forms from the IRS-1040 package,
1988), the Medical Article Records Groundtruth (MARG)
dataset (D2) [Thoma, 2003] (front pages of scanned biomedi-
cal journals from the National Library of Medicine), the RVL-
CDIP dataset (D3)[Harley et al., 2015] (scanned images from
the IIT-CDIP [Lewis et al., 2006] collection, containing doc-
ument categories such as ‘letter’, ‘memo’, ‘email’, ‘form’,
‘invoice’ etc.) and the Tobacco litigation dataset (D4) [Ku-
mar et al., 2014] (a sample of 3482 documents from the IIT-
CDIP collection). A brief overview of some of the impor-
tant properties of these datasets is shown in Table 3. Sam-
ple images from each dataset are shown in Fig. 1. To en-
sure fair comparison, we follow similar experimental designs
as suggested by previous researchers [Kumar et al., 2014;
Das et al., 2018]. For the NIST special dataset-6, we con-
struct the training corpus by randomly selecting two docu-
ments from each class. The rest of the documents were used
to construct the test corpus. For the Tobacco litigation dataset,
10 < n < 100 documents were selected to construct the train-
ing corpus from each class while the rest of the documents
comprised the test corpus. 20% of documents were randomly
selected from each document class to construct the training
corpus for the MARG dataset. For the RVL-CDIP, the entire
dataset was partitioned in 80:20 ratio to construct the training
and test corpus. For every dataset, experiments were repeated
25 times, each time with a randomly selected partition of the
dataset. All experiments were performed on a 12GB NVIDIA
Titan-XP GPU. The best model based on cross-validation was
used to report the test accuracy at each trial.

We measure the performance of our proposed method-
ology using two evaluation metrics. First, we measure the
median classification accuracy obtained for all datasets



Index NIST MARG Tobacco RVL-CDIP
(D1) (D2) (D3) (D4)

A1 94.30 70.10 41.85 48.72
A2 100.0 75.25 43.10 50.25
A3 100.0 95.05 60.58 71.02
A4 100.0 82.60 78.25 92.21
Bavg 100.0 83.95 80.92 89.86
Bwavg 100.0 84.05 81.25 90.43
B log 100.0 84.81 82.50 90.18
Bmlp 100.0 85.25 82.78 92.77

Table 4: A comparative analysis of classification accuracy obtained
for all datasets against state-of-the-art methods

Index Speedup in inference turnaround (δ)

A1 0.84
A2 1.58
A3 2.07
A4 6.83

Table 5: Speedup achieved by our proposed method over state-of-
the-art methods in total inference turnaround

over 25 trials. Second, we measure the relative speedup
in inference turnaround time using our proposed method
compared to a baseline. The speedup-factor ( δ) computed
for this purpose is defined as follows, δ = t 1

t 2
, where t1 and

t2 denote the inference turnaround for a baseline method
and our proposed method respectively, averaged over all
datasets. The median accuracy of our classification scheme,
computed using four different meta-classifiers i.e., simple
averaging (Bavg ), weighted averaging ( Bwavg ), logistic re-
gression (B log ) and multi-layer perceptron (Bmlp ) is reported
in Table 4. Our entire workflow consists of approximately
600 million multiply-adds. The average turnaround time
which include: (a) selecting the optimal pyramid level for a
test document by feeding it to the coordinator network, (b)
generating the anonymized equivalent image and (c) inferring
the final class-label is approximately 362 ms ( ±10.27 ms),
well within the threshold ( ≈ 500 ms) set by a number of
modern interactive workflows.

5.2 Comparison Against Existing Methods
We compared the end-to-end performance of our method
against four contemporary multi-scale approaches. These
baseline methods were selected from the existing literature,
if (a) it reports state-of-the-art result on one of our datasets,
(b) differs significantly from the previous methods. Input to
each method is the squared rendered image of a document.
Same experimental protocols, described in Section 5.1, were
followed for each baseline. The median accuracy and average
speedup-factor obtained from these experiments are pre-
sented in Table 3 and 4 respectively. For fair comparison, we
did not consider any preprocessing steps in the baseline meth-
ods when computing their inference turnaround time. Our
first competitor (A1) [Cesarini et al., 2001] proposes a modi-
fied XY-tree based encoding technique to represent each doc-
ument using carefully designed handcrafted features. We out-
performed this method significantly in terms of classification
accuracy on all datasets. Our second baseline (A2)[Kumar et

Index S1 S2 S3 ∆ Acc.(%)
D1 D2 D3 D4

S1 X X X 0.81 2.70 4.74 3.05
S2 X X X 0.0 1.15 2.80 2.27
S3 X X X 0.50 1.59 2.35 1.83

Table 6: An overview of results from our ablation studies

al., 2014] utilizes vertical and horizontal pooling operations
to compute multi-scale SURF descriptors [Bay et al., 2006]
for encoding each document. Significant improvement was
observed over this baseline for datasets D2, D3 and D4. Our
third competitor (A3) [Gordo et al., 2013] proposed multi-
resolution run-length histogram features for classifying vi-
sually rich documents. Although this approach outperformed
our method on dataset D2, its success could not be replicated
on other datasets. In fact, we were able to outperform this
method on two of the most challenging datasets, D3 and
D4. The final baseline method (A4) [Das et al., 2018] in our
experimental setup is an ensemble of region-specific CNN’s,
combining individual predictions to infer the final class-label.
We observed significant improvement over this baseline.

5.3 Ablation Study

To investigate the relative contributions of individual compo-
nents in our workflow on the downstream classification accu-
racy, we performed an ablation study. Each row in Table 6
measures the effect of a component of our workflow on the
downstream classification accuracy, following the same ex-
perimental setup in Section 5.1. The final column of this table
quantifies the absolute effect of that component on the median
accuracy obtained for a dataset. In S1, we measure the con-
tribution of the depth-separable convolutional architecture (as
coordinator network and the multi-column classifier) on the
downstream classification accuracy. Replacing this with a
traditional convolutional [LeCun et al., 2015] architecture re-
sults in a significant decrease in accuracy for D2, D3, and D4.
To evaluate the contribution of the level-competitive routing
strategy, in S2, we concatenated feature descriptors from all
levels and trained the multi-column classifier. Improvements
were observed over this baseline on datasets D2, D3, and D4.
More importantly, an average speedup of 3.85 was observed.
In S3, we evaluated the contribution of the multi-column
architecture by training a single-column of our architecture
on the augmented training corpus. Improvements in perfor-
mance were significant over this baseline for all datasets.

6 Conclusion

We have proposed a deterministic routing strategy for multi-
scale classification of visually rich documents in this work.
Comparisons against the existing approaches show that we
are able to perform competitively or better on all datasets,
achieving significant speedup in inference turnaround time.
In the future, we would like to extend this work to an end-
to-end trainable, attention-based network to pool information
across all levels of the spatial pyramid and derive highly dis-
criminative hybrid representations of each test document.
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